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Abstract 

The cosmological constant problem is examined under the assumption that 
the extrinsic mture of the space-time contributes to the vacuum. A com- 
pensation mechanism based on a variable cosmological term defined by the 
extrinsic curvature of the space-time is proposed. Under a suitable hypothesis 
on the behavior of the extrinsic curvature, we find that an initially large A(t) 
rolls down rapidly to zero during an early stage of the universe. Using pertur- 
bation analysis, it is shown that such vacuum behaves essentially as a spin-2 - 
field which is independent of the metric. Finally a dynamics for such field is 
proposed. 
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1 Introduction 

Current astrophysical data based on the Friedmann-Robertson-Walker (FRW) cosmo- 

logical model estimate an upper bound value for the effective cosmological constant, 

so that &~f/&rG is very small, to the order of 10-47Gkv4. In order to match the 

contributions to the vacuum energy density arising from gravity coupled fields, of the 

order of < pV >z 1071Gev4, the bare cosmological constant A,-, in Einstein’s equations 

would have to cancel a very large difference of around 118 decimal places, requiring 

an endless fine tuning in a continuously expanding universe [l]. 

This fundamental problem could in principle be solved by the use of a simple and 

elegant generalization of Einstein’s equations given by 

& j - f Rgii = 8TG tij (1) 

where 

tw. T(;:+T($, tiiti =T(“)iid+T(m)‘iti=oe ij = (2) 

Here T(: denotes the usual energy-momentum tensor of matter and T(:i is the 

vacuum energy-momentum tensor, including A0 and all other possible contributions 

to the vacuum energy density. The general form of r’$ is not known but in particular 

it includes the so called variable A models, where ti:$ = &A(t)gij, for some smooth 

scalar function of time A(t). In this case the general conservation law in (1) becomes 

simply [2) 

A= -goi ++jti- (3) 

To complete our set of equations, we add a state equation generically expressed as 

P=b-UP, 
I 

(4 

In periods of time when matter becomes almost absolutely conserved we obtain 
T(m)ii ri x 0 and A(t) M constant, which could in principle be adjusted to match 

the observed cosmological constant. 

In spite of many efforts, it appears to be difficult if not impossible to find a 

scalar field A(t) satisfying the appropriate Klein-Gordon’s equation in curved space- 

time with the total energy momentum tensor as a source [l]. This suggets that the 
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vacuum could be a field of different nature (31. F or example, from (1) we see that A(t) 

should behave just like the scalar curvatnre R [4). Nonetheless, we cannot use an) 

linear combination of R as A(t), simply because R is already included in left hand 

side of (1). 

In another example A(t) is taken to be a function of the space-time metric, so that 

its dynamics follows from the generalized gravitational field equations (1). Along this 

line some interesting models have been proposed (5],[6]. Nonetheless, each of these 

models use its own ad hoc ansatz for A(t) and we still lack a proper explanation for 

this function, or more generally for the vacuum tensor fi;. 

Assuming that the vacuum is of geometrical nature, then it should reflect some 

geometrical property of the space-time which is not included in the left hand side 

of (1). For example, A(t) could be made of a higher order contraction of curvature 

tensors, or even from some other manifestation of the space-time geometry, such as 

the extrinsic curvature. In this case, the observed small value of A,,//&rG would be 

a symptom of the weak bending of the universe with respect to its tangent plane. 

Based on the fact that the scalar curvature of the space-time may be decomposed 

into extrinsic components, we explore the possibility that the vacuum energy momen- 

tum tensor is related to the extrinsic curvature. In the next section we express the 

vacuum tensor T’“’ ’ t ii m erms of the extrinsic curvature of the space-time. Section 3 

describes several extensions of the FRW model adapted to the more general equations 

(1). Finally, using a perturbative analysis we show in section four that the extrinsic 

curvature behaves as a spin-2 field, generally independent of the metric. 

2 Embedded Cosmologies 

If a given manifold is bent but not stretched, its intrinsic curvature does not change 

but its extrinsic curvature, which measures the deviation from the tangent plane, 

would change. Thus, two distinct cosmological models with the same intrinsic cur- 

vatures could esibit different bendings. We may ask if that difference would have 

any intrinsically observable effect. We will see that for the same matter distribution, 



the difference between the two extrinsic curvatures corresponds to different vacuum 

configurations. This means that the vacuum tensor can be written explicitly in terms 

of that extrinsic cul-vature (sometimes refered to as the second fundamental form). 

Consequently, the observed A(t) can be taken as an experimental evidence of the 

bending of the universe. Reciprocally, by specifying the dynamics of the extrinsic 

curvature we would be able to describe a number of interesting scenarios where A(t) 

rolls down to zero, remaining in that condition until1 today.. 

The existence of this extrinsic curvature is a consequence of the well know math- 

ematical property that any manifold, including space-times, can always be regarded 

as a subspace of a S-dimensional space. Therefore, such subspace structure is not 

only compatible with, but also complementary to the exclusively metric description 

of space-time. 

To understand Ihe nature of the extrinsic curvature, we introduce a set of coordi- 

nates XJ‘, in a non.flat 5-dimensional manifold MS, such that’ 

gij = X$X:Gpv, N”X,:Qw = 0, TV = fl = N’NN”Gp,. (5) 

Here N’ are the components of a vector field N orthogonal to the space-time and 

%J are the components of the metric of Ms. The necessary and sufficient conditions 

for the existence of a solution Xp of (5), is that there is a tensor bij satisfying the 

Gauss-Codazzi equations: 

Rjkl = fl&lkblb + &jkl, (6) 

V&lj = %jk5 (7) 

where &jk[ and &jk5 represent projections of the Riemann tensor of MS along the 

directions X5 and Np respectivelly. The c‘ovariant derivative Vi is calculated with 

respect to gijs In terms of X ?p, the tensor bij may be expressed as 

b.. ‘I = -X;N&,. (8) 
‘Most known embedding spaces MD are flat with D < 10. Here for generality we assume a 

curved space with D = 5, so that a large class of comological models can be accomodated. Our 
conventions are: Lower case Latin indices run from 0 to 3. AU Greek indices run from 1 to 5. 
Rij = gm” R,ij,,. The space-time signature is (+ + + -). 
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Contraction of (6) gives an important equation: 

Rij - :Rgij = tij(b) + i(Rij - fRgij), (9) 

where Rij and R are the Ricci tensor and scalar curvatures of MS-respectively, and 

tij(b) = C(bimbjrn - hbij - i(s2 - h2)gij) 00) 

where 

h.2 = bn,ibmi, h2 = (gi’bij)2, 

are the extrinsic scalar and the mean curvatures respectively. Colnpaing with (1) we 

obtain 
T(y). = tdb) i l 4 

‘I 87rG 8*G5CRij (11) 

and the cosmological function in terms of bij is defined by 

W ‘!? 2rG tr($:i) = d(h’ - 2) - &R - 21rG firn)‘i. (12) 

From the contracted Bianchi identity, it follows that the generalized conservation rule 

in (1) is equivalent to the identity 

t’j(b), = 0. (13) 

The dynamics of the field bij is constrained by the Codazzi equation (7) which has 

no corresponding in the pure Riemannian geometry. Equations (9) say that the 

space-time curvature results from the blend of matter and vacuum energy densities, 

represented by tij(b). 

3 FRW Example * 

As an illustration, consider the Friedmann-Robertson-Walker (FRW) parametriza- 

tion, with coordinates (x1, x2, x3, x4) = (r, 8,4, t): 

h2 = -dt2 + U2(t)[dr2 + f2( r)(cls2 + sin20&J2)] (14) 
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with f(r) = r, sin r, sin11 r corresponding to k = 0, +l, -1 (spatially flat, closed, open 

respectively). We. use t,lie ener~-liiollieiit111ii tensor: 

T’ 46 = pgij + tp + p)uiuj, gi,Puj = -1. 

satisfying the more general conservation law in equations in (1): 

i(t) = 87r G(b + 3Hyp). 

This cosmological model can be embedded in a 5-dimensional flat space with metric 

signature (+ + + + -) so that gss = e = +l [7). It follows that equations ( 6,7), 

reduce to 

R.. ykl = 2bi@llj 9 

bklidl = 0. 

and the contracted form of (15) is 

Rij - fR9ij = tij(b). 

Instead of calculating bij from (8), we may solve (16) directly obtaining 

bll = b(t), & = f2(r)b(t), ba = (f(r)sind)2b(t), b = 4-J;,, 

(15) 

(16) 

07) 

(18) 

where b(t) is an arbitrary function oft and all other components are zero. Replacing 

these values in (17), we obtain 

ii -- 
u 

- --j&. 

aii+2fi2+2k e = -$&(ab). 

While the left hand sides of these equations are the familiar FRW expressions, the 

right hand sides, built with bij are new. Eliminating ii among those equations, we 

obtain a single relation between b and cl: 

b2 
ir2 + k = --, . 

u- (21) 
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Denoting the Hubble parameter H 

curvature by J3 = e, we may write 

= $ and the relative change of the extrinsic 

b 
b b B 

ab = s&b, boo = --$ E - l)gw, a, b = 1.3 

The extrinsic scalar and mean curvatures are respectively 

-2$4) h=$(+2) 

(22) 

(23) 

and the vacuum energy-momentum tensor in terms of b(t) is given by 

T(‘)& = 
&$($-+a'-p"b, 

The cosmological function (12) expressed in terms of the extrinsic geometry is _. 

ii(t) = $; -2nG(3p-p). (24) 

Let us examine the meaning of the extrinsic curvature in some particular situations. 

Defining a new function w(t) by b = eWa2, it follows that 

B=2H+; 

and (21) becomes ir2 + k = eha2. Comparing with the extended Friedmann equation 

(with A(t)) 

jL+k= !$(p - !@,d, (25) 

we obtain eti = yp~, where pi = p - A(t)/$aG is the total energy density. The 

derivative of this equation gives 

UT 
Gi= 

LJ=B-2H. 

This can be integrated producing the general expressiou for the matter energy density 

in terms of B, H and A(t): 

PT 
= PoTej%fJ-2ffhf~ 

(26) 
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where &)T is an integration constant. In particular, when w = q = constant, that is 

wlien the estriusic curvature is such that B = 2H, then p and A(t) become constants. 

It also follows from (22) that in this case b,j is conformally related to the metric: 

Replacing bij in (15), we obtain 

showing that the space-time has constant curvature, which means in our example a 

deSitter universe. Let us suppose now that w starts fluctuating. For example, we may 

have a membrane model of universe characterized by the condition h = 0 [9]. From 

(23), this implies that B = -2H, corresponding to & < 0. Integrating this relation 

we obtain b = 3 ‘and replacing in (26), we obtain a total density decaying as 3, 

which means a universe filled with some kind of hyper-stiff combination of vacuum 

and matter [8], decaying to zero at a later stage. F’rom (12) we see also that the sign 

of A(t) is governed by the mean curvature of the space-time and the signature of MD. 

In a membrane universe with h = 0 and e = 1, we would have A(t) < 0 [9]. On the 

other hand, when ti > 0 or, equivalently when B > 2H, we have a universe where 

A@> and P(t) would increase as positive powers of a(t), leading to somewhat strange 

universes without the primordial singularity. 

So far we have used only a general theorem on submanifolds to cosmology, without 

any further assumptions. Let us now consider a condition on the extrinsic curvature 

expressed as 

B=crH (27) 

where bo is an integration constant and wheie o is some yet unknown parameter. Since 

B is a measure of the relative varia.tion of the normal N, and H is always decreasing 

with time, (27) has the reasonable interpretation that the relative variation of the 

normal vector N decreases in proportion to the relative expansion of the universe. 

From (27) we have that b = boa” so that A(t) can be written as 

A(t) = Aooc,2(o-2’ - 2~G(3p - p) (28) 
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where A0 is a constant. The total density becomes 

pT = pTa2(o-2)s 

When cr = 2, we have a constant curvature space with a constant density. We may 

fix this constant asuming that it corresponds to the total critical density: p = mcr. 

In this case, the relative total density of vacuum and matter is 

flT = PT - = a2b-2) 
PTCT 

(29) 

As we see, depending on the value of o we obtain different scenarios, not necessarily 

corresponding to realistic models. The following table shows the decay h, A and fir 

corresponding to some values of a, where we have set A,-, = 1 and used 3p = p: 

tablel: some values of Q and corresponding scenarios 

We can now replace b(t) in (21) to obtain the expansion equation (a! = constant) 

b2 + K = (&%0-l) (30) 

It is quite conceivable that the proportion between B and H vary in different periods 

of the history of the universe. As table 1 suggests, a could be a function of time. 

One possible sequence would be that Q L - 2 at the beginning of the universe, with a 

density incresing at the rate of a 2, followed by a deSitter inflation with a =2,h= 

Constant and fir = 1. Next we would have a post inflationary period with a 6 1 

when A - l/a 2. The other remaining values of Q may not correspond to physically 

interesting models. 

The following graphs2 display A(t) and O(t) as a functions of the expansion factor 

a(t) and of a possible continuous parameter cr. -4s we see in Fig.1, the strip between 

*The a scale has been roughly divided in 3 parts only: the early, middle and late universe. For 
plotting compatibility we have clirniuated the singularity at a = 0 [lo]. 
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(Y sz 0 and the inflation line o’ z 2 corresponds to the most common scenarios. In this 

region, A(t) starts as a positive value but fall rapidly to zero during the early stages 

of the universe, remaining in that condition until1 today. The values o > 2 represent 

a region where A(t) has a polynomial increases at late universe. On the other hand, 

the regions located at a < 0 have an opposite r&ult, where A(t) starts with negative 

values but rapidly increases to zero at the early stages of the universe. 

Fig.1: A as continuous functions of a and a 

Figure 2 shows the behavior of the relative total density 0~ as a function of a(t) and 

Q. Again, not all values of a corresponds to realistic models. F’rom (27) we see that 

for the deSitter inflation line at a = 2 we have SZT = 1, suggesting that at the early 

universe a could have been slightly larger than 2. If we assume that the observed 

density is the result of the contribution of the vacuum and matter, that is, pi, then 

we may take that 0.1 5 ll~ 5 2. Conseq&ntly, today’s universe would be somewhere 

in the region defined by 1 < Q’ < 2, which in accordance with Fig.1 predicts A(t) M 0 

at late universe. The non intcgcr values of u in this domain seem to fit in a large 

classe of acceptable models. 
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Fig.2: !& as continuous functions of a and a 

4 Spin-2 Vacuum 

The hypothesis (27) should be replaced by a dynamical equation for the extrinsic 

curvature. The obvious candidate for the Lagrangia would be constructed with the 

second invariant of the extrinsic curvature K = ~(2 - h*), so that ICfi is the ex- 

trinsic version of the Einstein-Hilbert Lagrangian. As it happens, the Euler-Lagrange 

equations derived from this expression with respect to gij does not reproduce tij(b). 

This can be explained by the fact that K is homogeneous of degree 2 in gij, while 

Einstein-Hilbert’s Lagrangian is homogeneous of degree -1, leading to an inconsis- 

tency. To obtain the correct Lagrangian we notice that 

&(&A; = &i!ij(*)fi (31) 

Therefore a Lagrangian which does not depend on derivatives of gij would be given 

by the classical path integral over all embedded geometries: 

L, = 
J 

fi$( JiTJ-y) dg,j, (32) 
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We can easily see that the Euler-Lagrange equations for R,/=ij - Lr with respect to 

gij reproduce equation (17). On the other hand, the Euler-Lagrange equations with 

respect to bij gives only an algebraic, expression (that is, not involving derivatives) on 

this field, so that Cr is not telling the whole story. To write the complete Lagrangian 

we need a deeper insight on the nature of the field bij, which can be obtained from a 

perturbative analysis addapted to the embedded cosn~ological models. 

A space-time perturbation may be intuitively conceived as a local growth or defor- 

mation of a given background geometry. Mathematically speaking, this deformation 

may be described by a shift of the background along some transverse (that is, not 

tangent) vector field C, produciug a one parameter family of manifolds. The per- 

turbed or physical space-time is a manifold with the same differentiable structure as 

the background, whose points are identified with all points along the integral curve of 

C. Therefore, the metric of the perturbed manifold depends on the family parameter 

and it may be calculated by the Lie transport of the background metric along the 

integral curve [I 1). Thus, different perturbations are generated by different choices 

of transverse vectors C. Since this is a transverse vector, its tangent component in- 

duce a coordinate transformations, producing a “coordinate gauge” condition on the 

perturbation. Of course, this is undesirable and should be filtered out. Only the 

perturbations which are independent of coordinate gauges are physically meaningful 

[12] and correspond to a density perturbation [13],[14]. Although this perturbation 

is described as a clsssical process, it eventually started from the backreactions of the 

fluctuations of quantum fields interacting with the classical gravitational field of the 

background. Here we merelly apply the above definition to the case of a space-time 

perturbation given by the tensor bij- 

A family of embedded submanifolds of the flat space MS, in the neighborhood of 

that space-time, may be described by the Cartesian coordinates 

zp = xv -I- SNfi’, 

where s is a parameter such that s = 0 correspond to the original background space- 
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time. In this case, a transverse vector can be written as 

cp = C’X’,i + CN’, C # 0. 

If Q is a geometrical object defined in the background, then the corresponding 

change of Q produce by the above perturbation is given by the Lie derivative &Q. 

For a small value of the parameter s, the linear or first order perturbation is 

(1) 
Q= Q + s&Q. 

Consider two distinct linear perturbations of the same object Q generated by two 

transverse vectors C and <‘- Then, 

(1) 
Q’ - ‘);= X(Q - .fZ,,Q, . . 

where c = (s’c” -.sci)X$ is a tangent vector and ‘1 = (s’c’ - sc)W is a normal vector. 

Suppose q could be set to zero, without any further conditions imposed on <, which 

remains arbitra$. In this case, the two perturbations would be equal whenever 

4Q = 0 for any <. This implies that we could eliminate the perturbation by an 

infinitesimal coordinate transformation. Such condition can be satisfied only by a very 

special class of geometric objects. The metric could never be one such object unless 

all vector fields of the space-time are Killing vector fields. One possible solution to 

the above coordinate gauge problem is to take the normal vector N as the transverse 

vector (with a non zero signature). In this way, no coordinate transformation can 

interfere with the perturbation. Next, to construct the perturbation of an object, we 

first determine the perturbation of a tetrad field (hi} and then contract the object 

with the perturbed tetrad [15]. The linear perturbation of (hi} generated by N is 

(1) 
hf = hf + s&h; 

and the physical components of the metric in the perturbed tetrad is given by 

g&y (Jmn. 

3This would be the case if the signature of N is taken to be zero as in [ll], where there is no 
measure for the length c. 
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Since our perturbed space-times have a metric induced by GPy (or ~lll” in the flat case), 

we may replace the tetrad {hj} by a vielbein {rr} and the perturbed metric will be 

given by 
(2) (‘1 (1) 
gij = 1: 1; Gpve 

Let us consider the unperturbed vielbein to be 1: = X’fi and, just for the sake of 

intuition, that the normal AT points towards the most convex side of the space-time. 

Then, the perturbed vielbein along this normal is 

(1) 

so that the second order geometric perturbation of the metric is 

(2) (l)(l) 
9 ij (2, S) =I’ 1; qpy = X$X>qpp + 2sNyiXyqp, + S2N~iNY9”, (33) 

or, using (8), 

(2) 
9 ij= gij - 2% + s2gmnbimbjn = g”“(gim - sbim)(gjn - sbjn>. (34) 

An approximate field equation for bij can be obtained from the linear perturbation 

of the metric (assuming s2 << s in (34)): 

(1) 
gijX gij - 2s bij 

Replacing this in (l), and applying the usual deDonder gauge ($ - h/2 sf>,i = 0, we 

obtain 

a2 (bij - ihgij) - Rich (bH - ;hgkl) = 8rG(Z+$ + T(2), (35) 

so that the extrinsic curvature is a spin-2 field over the background with the total - 
energy-momentum tensor as source. Now, if a spin-2 field has the total energy mo- 

mentum tensor as a source, it must necessarily be derived from a Einstein-Hilbert 

type Lagrangian C2 = R( bij)J-det(bij), h w ere bij takes the place of the metric in all 

expressions and contractions [lG). The resulting Lagrangian would therefore be 

&, = c, + & = 
/ 

Ji;;$(&?fi) dgij + R(bij)Jy& (36) 
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Notice that the dependence on gij in the second part of this Lagrangian is only 

fictitious. We may now set the total Lagrangian as 

This Lagrangian, tells us how the universe bends in response to the vaccum energy 

and in particular determines the behavior of A(t). The corresponding field equations 

with respect to gij are 

Rij(i-7) - iR(g)gij = tij(b) = 8aG(T(“$ + T(g) 

while the field equations with respec to bij are 

&j(b) - iR(b) bij = fij(b) 

where fij(b) is defined by 

This tensor is not a source term for bij and is not zero in general. Further constraints 

may be imposed on the extrinsic geometry of the space-time by assigning specific 

VdUeS for fij. 

In summary, the vacuum energy was expressed in terms of the extrinsic curvature of 

the space-time. In a first exploratory analysis we have used the geometric constraint 

B = CYH, obtaining several possible scenarios where A(t) decays rapidly to zero and 

Q becomes 1 or a value smaller than 1 in its late stages. Next, a dynamic condition . 
on the extrinsic curvature was defined by a perturbation of the space-time generated 

by bij. We concluded that this field behaves as a spin-2 field over the background, 

with the total energy-momentu~ll tensor as its source. Once this was understood, we 

applied a general theorem due to S. Gupta to derive the finite Lagrangian for bija In 

a subsequent paper, we will apply those results to esamine the density perturbation 

induced by the extrinsic curvature in the FRW example. 
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